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Coupled Sound and Heat Flow 
and the Method of Least Squares 

By Alfred Carasso 

Abstract. We construct and analyze a least-squares procedure for approximately solving 

the initial-value problem for the linearized equations of coupled sound and heat flow, 

in a bounded domain Q in RN, with homogeneous Dirichlet boundary conditions. The 

method is based on Crank-Nicolson time differencing. To approximately solve the re- 

sulting system of boundary value problems at each time step, a least-squares method is 

devised, using trial functions which need not satisfy the homogeneous boundary condi- 

tions. Certain unknown normal derivatives of the solution enter the boundary integrals. 

By using suitable weights, these unknown derivatives can be set equal to zero without 

impairing the 0(k2) accuracy of the Crank-Nicolson scheme. However, one must use 

smoother trial functions to obtain this accuracy. 

1. Introduction. In a recent paper, [4], Bramble and Thomee discuss least-squares 

methods in the numerical computation of the homogeneous Dirichlet problem for the 

heat equation in a bounded domain Q in RN. The technique is to flrst discretize the 

time variable, using an implicit scheme, to obtain a sequence of elliptic boundary value 

problems at each time step. This latter problem is then approximately solved by "least 

squares". The importance of this work, in the context of the approximation of time- 

dependent problems by variational methods, rests in the fact that the trial functions 
need not satisfy the boundary conditions, so that one can treat problems in general do- 

malns. 
While only the heat equation is discussed in [4], the ideas would seem to have 

application to other evolution equations. In the present paper, we consider a mixed 

initial-boundary value problem for a coupled system of two evolution equations, the 

linearized equations of coupled sound and heat flow, in a general domain Q in RN, 

with a smooth boundary 3Q. This problem is the best known example of a class of 

problems important in the applications. Other concrete instances of coupled hyperbolic 

parabolic equations exist and are mentioned in [1], [6], [13], and [14]. A class of 

coupled equations is investigated in [7]. Mathematically, the problem involves consider- 
ation of two or more unbounded operators of different strength. Consequently, the 

study of the stability properties of explicit schemes (in one space dimension) has inter- 

ested several authors. See [7], [8], [11] and [12]. In [17], a Crank-Nicolson Galer- 
kin method is proposed for the one-dimensional problem, using trial functions satisfying 
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the boundary conditions. Since the semiboundedness of the spatial operator is then 
automatically preserved, there are no stability difficulties with this procedure. 

Very little seems to have been published in connection with the above problem 
in more than one space dimension. In this. paper, we analyze a least-squares procedure 
based on the Crank-Nicolson time discretization. Since the trial functions do not satisfy 
the boundary conditions, the problem of formulating the fully-discrete scheme so as to 
obtain stability, turns out to be rather interesting. While we follow closely the organiz- 
ation of [4], there are major differences both in the formulation of the fully discrete 
scheme and in the type of results we obtain. In the problem treated in [4], the analy- 
tic solution operator, etA, is a holomorphic semigroup satisfying the characteristic esti- 
mate 

(1.1) IIAmetA L2 < CmFt , t>0O m = 1, 2, 

This smoothing property of etA plays an important role in several places in [4]. In par- 
ticular, in the convergence theorems, [4, Theorems 5.1, 5.2], it is used explicitly to es- 
timate the L2 norm of the error at time t with the order of the best approximation to 
the solution by functions in the approximating subspace. In the problem treated here, 
the solution operator is a CO semigroup, but not a holomorphic one, and we are not 
able to obtain the order of the best approximation for the L2 norm of the error at 
time t. Beyond that, other difficulties arise inevitably, due to the fact that one has a 

coupled system of boundary value problems at each time step rather than a single ellip- 
tic problem. In constructing the norm in which to approximate the solution at each 
time step, we find that we must include more boundary data than are actually supplied 
in the analytic problem. For example, although only the value of the temperature- 
zero-is prescribed on 3Q, one needs both the temperature and its Laplacian in the 

boundary integral, due to the fact that operators of different strength are involved. We 

show that if the initial data are sufficiently smooth, the Laplacian of the temperature 
is also zero on 3Q, so that these extra data are actually known. More serious is another 

coupling effect, originating in the hyperbolic problem, which forces us to include the 
normal derivatives of certain components of the solution in the boundary integral. 
These extra data are unknown. We show that by using suitable weights, these deriva- 
tives can be taken to be zero without impairing the O(k2) accuracy of the Crank-Nicol- 
son scheme. A penalty must be paid for being able to use such wrong values. It turns 
out that one must employ smoother trial functions than in [4], in order to obtain the 
same accuracy. See the remarks after Theorem 5.1. 

We use the letter C to denote a generic constant. 

2. The Analytic Problem. We consider the infinitesimal motions of a compres- 
sible fluid in which the transfer of energy by thermal conduction is a significant aspect 
of the flow. Let po, Eo, VO and u0, respectively, denote ambient values of the pressure, 
specific internal energy, specific volume and material velocity, and let p, E, V and u de- 
note small deviations from these quantities. Let c = A/ pO VO be the isothermal sound 
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speed, y > 1 be the ratio of specific heats, and a > 0 the thermal conductivity. In 
terms of the auxiliary variables w = cV/VO, e = ('y - 1)E/c, the linearized equations 
expressing conservation of mass, momentum, and energy, are, cf. [6] and [13], 

(2.1) aw/at = c u, 

(2.2) au/at = cVw - cVe, 

(2.3) 3e/lt = aAe - ('y - 1)cV * u. 

We assume the disturbance confined to a fixed spatial domain Q, in RN, and that, 
for simplicity, the ambient conditions prevail on the smooth boundary M? of Q, so that 
e = w = 0 on M?, for all t > 0. Taking the divergence of both sides in (2.2) and elim- 
inating V. u from the resulting system, we obtain two equations for the unknown scalar 

fields w(x, t) and e(x, t), namely, 

(2.4) wtt = c2Aw - c2Ae, x E Q, t > O, 

(2.5) et = aA\e - (- 1)Wt, x C Q, t > 0 

together with, 

(2.6) e=w=O, xe ?,t>0. 

We shall show that, given initial values of e, w and wt, the resulting initial-bound- 
ary value problem is well posed in an appropriate function space. It is convenient to 
make use of the spaces Hs, s > 0, introduced in [4] . Let {Xm }m=l be the eigenvalues 
of the negative Laplacian in Q, with zero Dirichlet data on M?, and let {Om}'=, be 
the corresponding orthonormal sequence of eigenfunctions. For a given v E L2(Q?), let 

{Jm} =j be the sequence of Fourier coefficientg of v relative to the {Jm}. For each 
s > 0, the Hilbert space 1fs is defined to be the subspace of L2(Q?) consisting of all v's 
for which the norm 

(2.7) l= (1 E Is 3ml 12) 
m -l 

is finite. Hk = nf Hs is dense in every Hs and consists of all C(?(Q) functions s>O 
which vanish on M? together with all powers of their Laplacian. If s is a nonnegative 
integer, and v E Hk, the s-norm is equivalent to the usual Sobolev norm, vII HS. It 

follows from the trace theorems, see, e.g., [10], that if s > 1 and v E Hs, then v = 0 

on 3Q. If v E Hs, s > 3, then both v and Av vanish on ?Q. 

Returning to (2.4), (2.5), put wt = v in (2.4), (2.5), and let G be the 3 x 3 matrix 

[0 I 01 
(2.8) G = c2A 0 -c2A\. 

L0 -(Y -1 0 a 
A A 

12t G = G(Xm) be the 3 x 3 matrix 
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0 1 01 

(2.9) G = m 0 c2XmI. 

L 0 (l -Y) -XmJ 

Let U be the three component vector U = [w, v, e] T. The initial-boundary value prob- 
lem for (2.4), (2.5) may be equivalently written as 

(2.10) Ut = GU, xeQ,t>0, 

(2.11) U(x, 0) = [f(x), g(x), h(x)f", X e Q, 

(2.12) e = w = O, x e M?, t > 0. 

We now introduce the Hilbert space US = HS+ I x HS x HS+ 1, s > 0, consisting of all 
three component vectors U(x), for which the norm 

(2.13) 11U11 {c2IIwII2+i ?Ills +y- 1 S+1 }1 

is finite. In general, the components of U will depend on both x and t. We set 

(2.14) 2IU(t)II =C211W(. , t)112 + IIv(. , t)112+ C? Ile(_t)112 

We have the following 
THEOREM 2.1. Let 1 > 0. For each initial value U(x, 0) e U', problem (2.10)- 

(2.12) has a unique solution and the following estimate holds: 

(2.15) 11 U(t) III < 11 UP )llI. 

Proof. We construct the solution by expanding in the eigenfunctions of - A. Let 
T 

(2.16) U(x, 0) = [ E amom, E bmom5 E dmom 
m=l m=l m=l 

and put 

(2.17) U(x, t) = [ZE?m (t)m Z E fm (t)wm , E 6m (t)Om ]T. 

Substitution of (2.17) in (2.10) leads to an initial-value problem for a linear system of 

ordinary differential equations, for each fixed m, namely 

(2.18) [&m(t)5 fm(t)5 5m(t)] T = G(Xm) [?tm(t), Om(t), Sm(t)] T, 

with 

(2.19) [am(0), Om(0)5 6m(O)]T = [am, bm, dm] T_ 

For each fixed m, equip three-dimensional Euclidean space with the inner product 

(2.20) (x, y) = C2XmXiYi+X2Y2 + y- 1 . 

Then, for each m, the matrix G(Xm) is dissipative, i.e., 

(2.21) Re (Gx, x) < 0. 
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It follows immediately from (2.21), that (2.18), (2.19) has a unique solution, and 

c2Xm l am(t)12 + IfOm(t)12 + 1 1m(t)12 

(2.22) 2l 
< c2Xm lam 12 + lbm i2 + c m Id 12, 

for each m. The estimate (2.15) now follows from (2.22) and (2.14). This proves the 
theorem. 

3. The Semidiscrete Problem. Let k > 0 be a small increment in the time vari- 
able. Leaving the space variables continuous, we discretize the time in (2.10), using the 
Crank-Nicolson scheme, to obtain a sequence of boundary value problems at each time 
step nk, namely, 

(3.1) (I -kG12) Wn +l (I + kG12) Wn, x E Q, n = O, 1, 2, * , 

(3.2) w n+1 = wn+1 = 0 x E M2 

(3.3) WO = U(x, 0), x E Q. 

Here Wn(x) = [wn (x), wn(x), wn(x)] T is a three-component vector which pre- 
sumably will approximate U(x, nk), where U(x, t) is the solution to (2.10)-(2.12). This 
discrete initial-value problem is also well posed. 

THEOREM 3.1. Fix s > 0 and let W? E US. Then, there exists a unique solution, 
{ Wn }, of (3.1)-(3.3) and 

(3.4) 11 Wn i,s < IWo0IIS, n = 0, 1, 2, 

Proof. We may again construct { Wn } by expanding in the eigenfunctions of -A. 

Put T 

(3.5) Wn = IEam n ,m 20 Om E , 6 mOm 
Lm and let 

(3.6) Y~~~~~~~ - [?gtn , on , 5n IT. (3.6) yf = 

Then, for each fixed m, the coefficients Yfn satisfy 

(3.7) [I-kG/2]yn+1 = [I + kG/2]yn, n= 0 1 25 

We again use the scalar product (2.20) for the space of vectors ynf Forming the scalar 

product on both sides of (3.7) with the vector yn+l 1 yn, we get 

i(yn + 1 112 - Ilyn 112 - (yfn yn + 1) + (yn + 1 yn) 

(3.8)~~~~ (k/2 ((yn +1 + yn) , (vn + 1 + yn)). 

Using (2.21) in (3.8), we have 

(3T9) p1yn + 1 11 < lu Yn ast 

This proves that (3.1)-(3.3) has a unique solution and establishes the estimate (3.4). 
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LEMMA 3.1. Let y = [y 1, y2, y 3 ] T be a vector in three-dimensional space. Then, 
there is a constant C, independent of y and m, such that, in the norm induced by (2.20), 

liekG y - (I - kG/2)- 1 (I + kG /2)yIt 

(3.10) < 11(I- kGI2)ekGy - (I + kG/2)yII 

?Ck3{XM Iyj 12 + XIy2 12 + X7 IY32}1/2 

Proof To begin with, since Re(Gy, y) < 0, we have 11(I- kG/2)-1 I < 1, so 

that 

(3.11) 11(I- kG/2)1 z11 < lizI. 

If we now apply (3.1 1) to the vector 

(3.12) z = (I - kGI2)ekGy - (I + kG/2)y, 

we obtain the first inequality in (3.10). 
Next, by Taylor's theorem, for some T with 0 < T < k, 

(3.13) (I - kGI2)ek= I + kG/2 - (rk2I4)G3eTG 

Hence, for any vector y, 

(3.14) I1(I - kGI2)ek y - (I + kG/2)yII < (k3/4)IlerGG3yII < (k3/4)IIG3y11 

since lieTG il < 1, independently of m, due to the dissipativity of G(Xm). 

It remains to calculate IIG3yII. We have 

r 0 - ) C~~~~~~2 ;a2 xt2 - 
(3.15) G3 = yc4x2, (y-1)ac2X2, 2a2c2xA3 -c4x2 [ 

L(1 - wy)C2aX2, Yy(y- 1)c2Xm - a2(y- 1)X, 2C2a(jy- 1)X2 _3 

Hence, 

1tG3y112 = c2Xm Ic2 Xmy2 + C2ax2yI2 

(3.16) ?~~ kyc442y1 ? (,y - 1) ac24y2 ? a2c2Xy3 YC4X2y312 (3.16) +IY mY + t ) mY2 +(c mY3 t mY31 

+ |'j (1 - y)c2aX2y1 
+ 

'Y( - 1)c2Xmy2-a2(y-1)2 

+ 2c 2a((7- 1)X2Y i- 3XAY3 12. 

Since Xm t ?, we have from (3.16), with a constant C independent of m, 

(3.17) IIG3y2 C{45 iyl 2 + XY2 12 + XIy3 12} 

The lemma follows from (3.14) and (3.17). 
We denote by E(t) the solution operator at time t associated with the analytic 

initial-boundary value problem (2.10)-(2.12), and by Ek(t) the solution operator asso- 

ciated with the semidiscrete problem (3.1)-(3.3). Both of these operators are bounded 

from ffS into itself, s > 0, as follows from Theorems 2.1 and 3.1. 
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THEOREM 3.2. Let V H. Then there exists a constant C independent of k 

and V such that 

(3.18) llEk(k) V - E(k)Vl lo < 11 (I - kG/2) [Ek(k) V - E(k) V] 10 _< Ck3 11 V116. 

Proof Put V= [E2m = lam amO X0 = l bmM 1X = l dm Om ] T and for eachm = 

1, 2, * , let Ym be the point in three-dimensional space given by 

(3.19) Ym = [am, bmin dm]T. 

Then, using Lemma 3.1, 

JEk(k) V - E(k) V112 

- Z liekG(Xm)ym - [I- (k/2)G(Xm)] 1 [I ? (k/2)G(Xm)]ym 112 
m=1 

(3.20) < j I(I - kGI2)ekGym -(I + kG/2)ym 112 

= I1(I - kG/2) [Ek(k) V - E(k) V] 112 

? Ck6 { 5 lam 12 + 5 lbm I2 ? dm 12} 
m=l 

< Ck6 11 V12I. 

This proves the theorem. 

4. Some A Priori Estimates. Equations (3.1)-(3.3) define a convergent "method 
of lines" where only the time variable is discretized. At each time step, one must solve 
a coupled system of boundary value problems. We shall construct a "least-squares" 

procedure for approximating the problem at each time step, and eventually obtain a 
"fully-discrete" algorithm for the initial-boundary value problem (2.10)-(2.12). The 

construction rests on certain a priori estimates which we develop in the present section. 

We will be dealing with arbitrary elements of the Sobolev spaces H'(&?), s a non- 

negative integer. Such functions will not usually belong to If. We use the notation 

(u, V)Hs, II HSu to indicate scalar products and norms in Hs(9?). We also introduce the 
Hflbert space HXS, of three component vectors U = [w, v, e] T, with the norm 

(4.1) = {c2IIwI12 s+ III 2 1 eIlIs+e}I}1 

Note that by the previously mentioned equivalence of norms, if U E HS, s a nonnega- 

tive integer, then 

(4.2) csIll } s < lUlls < CSII UI1 s, 

for some positive constants c5 and Cs, independent of U. 

Let Lk denote the operators I ? kG/2 of Section 3. We have 
LEMMA 4.1. Let Ube an arbitrary element of HU2. Leta = 2Max{c2, 1, (y- 1)] 

Then 
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(1 - ack)1U112 0 < IIL- U112 0 + k 2 3(w 
- 

e) ds 
(4.3)?k 

+ kJa2 ' _ 1)(e + Ae) ap 
ds. 

Proof 

IL- U1120 = c2 IIw - (k/2)vII2,1 + liC2 (k/2)A(e - w) + V IIL2 

+ C II(k/2) (y - 1)v + e - (ak/2)AeII2l 

(4.4) = c211wI12 + ?IIVI12 + ?lel 12 + 2 ?12 + kIIAe - AW11|2 Hi L2 'Y -1 IlHi 4 H1 4 L 

2 

+ - I I(k/2) (y - 1)v - (ak/2) AeII 
2 

+ c2 k(v, (w - e))H1 -c2 k(v, A(w - e))L 2 -(C2ak/(y- 1)) (e, Ae)Hl. 

Hence 

(4.5) IIUII02 - IIL- Ul20 < c2k(v, A(w-e))L2 - c2k(v, (w - e))H, +-k (e, Ae)Hl. 

Next, we. make use of Green's formula, 

(4.6) (v, AW)L2 = v ds - D(v, w), 

where 1' is the exterior unit normal on MQ, and D(v, w) is the Dirichlet integral 

(4.7) D(v, w)= JN b- 
a X dx. 

Since, 

(v, (w - 
e))H1 (v, (w - 

e))L2 + D(v, (w - e)) 

(4.8)a 
(4.8) ~ ~~~(v, (w e)) L2 + la " av (w - e) ds - (v, A(w - e))L 2 

and, 

(e, Ae)Hl = (e, Ae)L 2 + D(e, Ae) 

(4.9) | (e?Ae) ae ds -D(e, e) - IIAeII2 

we obtain on using (4.8), (4.9) in (4.5), 

IIUII2 0 - IIL- U1120 ? c2(,(+ )L ?C2kf 
3w - e) d k C2L Ul26 k(v , (w - e))L 2 + 2 v kp 

ds 

(4.10) ?a2f ( )(? 3e 
(4.10) + c2k la (- (e + /Ae) TV ds. 

Finally, 
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(v, (w-e))L2?6 2 IIVII2 + IIWII12 ? le IL2 

(4.11) 2 VII2IIV2 + IIWIIH, + lie 112 < 
2a1IUII> , 

where a > 0 is as in (4.3). 
Hence, (4.3) follows on using (4.11) in (4.10). 
LEMMA 4.2. Let Ube in Hf2. Then with a as in (4.3), 

(4.12) (1- ak) II4 UI ? (1 + ak) IIL- U112 0 + 2kfaQ C2V ( e) ds 
(4.12) 

2 a 

+ 2k lQ(a_ (e + Ae) a- ds. 

Proof. We have 

IIL+ U1120 - IIL- U112Io = 2c2k(v, A(w - e))L2 
(4.13) 

+ 2c ak (e, Ae) - 2c2 k(v, (w - e)) 

Using (4.8), (4.9) in (4.13), we get, 

IIL UI12<o - IIL- U112I0 = 2c2k(v, (w - e))L2 

(4.14) k+ 2kj c2v H a ds?2k a ? +e) L3e 
(4.14) 

~~~~~3(w -e) (e -eds. 

Next, as in (4.11), 

(4.15) 2c2k(v, (w - e))L2 H 2ak11U11 o. 

If we now use (4.15) together with Lemma 4.1 in (4.14), Lemma 4.2 follows. 

5. The Fully-Discrete Problem. For the approximate solution of (3.1)-(3.3) for 
each n, we shall employ a finite-dimensional subspace, Sq, of H.2, consisting of three 
component vectors T whose entries are piecewise polynomials. The elements of Sq will 
not, in general, satisfy the homogeneous boundary conditions (3.2). However, Sq will 
have the property that given any three-component vector V C 2+s C H2, there is a 
vector T in Sq such that 

(5.1) IIV- T11i? < Chs+2-lI1Vlls+2 0 A 1 < 2, 

for all 0 6 s < q. Here, C is a constant independent of V and h. The construction of 
such spaces is discussed in [2], [3], [4], [16], and their references. Computational in- 
vestigations of least-squares procedures for elliptic boundary value problems are reported 
in [15]. From (5.1) we deduce that 

(5.2) Inf E h'ilV - T11 Xl < Chs+ 2 11 Vlls+2 . 
q E=Sq 1=0 

At each time step in (3.1), one must approximately solve 

(5.3) L- W = L+ V in Q, 
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(5.4) w1 = w3 = 0 on ?Q, 

where V is known and is obtained from the preceding time step. We now introduce 
the bilinear form 

(4,'I')A=(L,L-q A)L- o)?4k6J fo[ 4' 4? ! + 1 ds *)A k k 92~ av av av 

(5.5) ? 7rkh a (c2 )2 03i3 ds + Xkh f c402t2 

?+ kh Jf (co)2 Ab3A43 ds, 

where lrkh, fkh5 Xkh are weights which wil be chosen later. See (5.19)-(5.21) below. 
We always assume that 

(5.6) 7rkhx 5 kh 5 Xkh > 1/Ik4 

The bilinear form (5.5) is well defined for all JD, ' in the Hilbert space H2. In- 
deed, if JD is in H2, its third component, 03, lies in the Sobolev space H3(Q), and the 
trace theorems (see e.g. [4, Section 4] ) guarantee that p3/a3V, A03 exist and belong 
to L2(aQ). 

On H2, the form (5.5) defines an additional scalar product. That is, IkDIIA - 

{QD, ()A}l 12 is a proper norm on H2 for all sufficiently small k. This follows from 
Lemma 4.1 and (5.6), on using inequalities such as 

(5.7) kf92 c22 d 2 a A 2 a 3 ds + 14 a2 c4102 12 ds, 

etc. 
LEMMA 5.1. Let V C H2 and let W be the corresponding solution of (5.3), 

(5.4). Then, there is a unique element U in Sq minimizing 111 - WIIA over all JD in 

Sq. It is given by the equations 
111.1 

-)X0 + k6 [wl ~f1 3w3 af3 (5.8) (U, F)A = kLV, LkF)Ro ? 4 [ + a ds, 

YF in Sq, where wi, fi are the ith components of W and F, respectively. 
Proof. By the Pythagorean theorem, the unique U in Sq minimizing 1 - WIIA 

satisfies 

(5-9) (U, F)A = (W, F)A VF in Sq. 

Now if V is in tf2, then, by Theorem 3.1, so is W. Thus W E H3 x j2 x H3. Hence, 
W1 = W2 = W3 = 0 on aQ and Aw1 = AW3 = 0 on M. Consequently, from (5.5), 

(5.10) (W, F)A = (L W,LF) + 4k6 1[a1 a + a a-3 ds. 

Since L- W = L V, the result follows. 
We shall now describe a family of fully-discrete schemes for approximating the 

initial-boundary value problem (2.10)-(2.12). The schemes differ from one another 
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only in the choice of the weights lrkh, Xkh, and 3kh in (5.5). We first remark that 
Eqs. (5.8) are not suitable for defining an approximate solution of (5.3)-(5.4), because 
the right-hand side of (5.8) involves unknown boundary data, namely, the normal deriva- 
tives of the solution W. Our strategy will be to replace these unknown derivatives by 
zero and to choose, as an approximation to W, an element of Sq different from the U 
defined by (5.8). It is evidently crucial to be able to control the growth of the error 
introduced by using such wrong boundary data. This is the reason for the factor k6 in 
(5.5). We have 

LEMMA 5.2. Let Ve h2 and let W be the corresponding solution of (5.3), (5.4). 
Let U be defined by (5.8), and define the approximation W of W by the equations 

= (+ 

VL_F. 
VFinS 

(5.11) (W, F)A = (LkV, LhF)0 VFinSq, W E S. 

Then, 

(5.12) 11U- WIIA ? Ck3IIVII1. 

Proof. We have 

(5.13) (U- W, F)A 4k6fa [ aV aV aV afJd5 VF in S . 
q 

a 

Hence, since U- W E S, 

11U- WIIA = 4kf L av av (u W av aa (U3 - 
W3__ 

(5.14) <,203} (awl 2 + a3W32 ds1/2 

*2k3{f( (U1 - Wid) 2 a 2 dS}112 

on using Schwarz's inequality. Next, from (5.5), 

(5.15) 2k3{f (+&av - 1) 2 ? a 3 -. )2) d}1/2 IIU- WIIA. 

Therefore, 

516) < ' aW1 2 aw1 2\ d 1/2 
(5 .16) II U- WIIA ? 2k3 l v 

- 
a dsJ 

Next, we use the trace inequality, 

(5.17) aC I2 dsCIIWII2 
Ja av H25 

in (5.16). This leads to 

(5.18) I U- WIIA S Ck3 IWII1 Ck3IIWII1 . 

Finally, by Theorem 3.1, IIWII1 < I1V111. This proves the lemma. 
Let , be a real number greater than 2 and let the weights lrkh, Xkh, kh in (5.5) 

satisfy 
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(5.19) 1/k4 6kh 6 Ck2h-2M, 

(5.20) 1 /k4 6 kh Ck2h-2+2, 

(5.21) 1/k4 6 fkh 6 Ck2h-2M+4. 

For each choice of ,, the fully-discrete algorithm for the initial-boundary value problem 
(2.10)-(2.12) is as follows. Given any initial data W? in H 2, we define the sequence 
{W"}, of approximate solutions at time t = nk, of (3.1)-(3.3) by means of the march- 
ing procedure 

(5.22) (W1+', F)A = (Lk Wn, L-F)Ro VF in S, n = 0, 1, 2, 3, . 

(5.23) W = 

with Wn+ 1 being sought in Shj. Thus, given a basis for Sq, finding Wn necessitates solv- 
ing a system of linear equations for the coefficients. This system always has a unique 
solution because Sh is finite-dimensional and 11 IIA is a norm on Sq. It should be noted 
that the scheme is defmed only for initial data in H 2 rather than in the larger space 
H0, wherein the analytic problem (2.10)-(2.12) is well posed. We shall comment on 
this phenomenon at a later stage. 

With Wn as in (5.22), put W1 = Ekh Wo, Wn = EkhWn-1 = EkhW0. We shall 
now show that the fully-discrete schemes (5.22) are unconditionally stable, that is, the 
family of discrete solution operators {Ekh} is bounded in an appropriate norm, uni- 

formly, as k, h 0, n -oo, nk 6 T. This is 
LEMMA 5.3. For all WO in h2 and sufficiently small k with 0 S nk 6 T, we have, 

independently of h as h 0, 

(5.24) IIEnkhW?IIo S CeaTIIWO IIA. 

Proof. By (5.22) and Schwarz's inequality, 

(5.25) 11W n+ 1 II1 6 IILk+ Wn IIo IIL- Wn + 1 
?(o I I IL+ WnIRoIIWn+1IIA. 

Hence, IIWn+1IIA ? IIL+WnIIl0A Next, from (4.12) and (5.5), (5.6), 

(5.26) IIL+ W II? 1 ( _a )1 lWnIIA2 

so that 

(5 .27) |I W II~~~~A 6 1 -_ ak )1WIA, 

Hence, if 0 6 (n + 1)k 6 T, 

(5.28) IIE"kh+ 1 W0IIA 6 CeaTIIWOIIA. 

Finally, from (4.3) and (5.5), (5.6), 

(5.29) IIE"kh+1W?II k 1 IE1kh+ 1 W?IIA Thi prakIIEthWema 
This proves the lemma. 
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LEMMA 5.4. Let 0 S s S q and let W G t 2 +S. Fix ,u > 2 and let (5.19)-(5.21) 

be satisfied. Then there is a constant C independent of W and h such that, 

(5.30) Inf II1 - WIIA S Ckhs+21-M IIWII2+S. 
h 

Proof. We have for any U= [w, v, e]T Tin H2 

IIUIIA = IL-kU112o + 4k6 aw 2 + dse 2d A k 92Ja av TV) 

(5.31) + (-1 ) lekh 1e2 ds + ( r) 2khf| lIeI2 ds 

+ c4Xkh f Iv 12 ds. 

From (4.4), 

(3 IILUII20 6 CIIUII10 + Ck2{IIVI12 + IIAell2 ?+ IIWIIL2} + Ck2IIAeII|21 

SCIIUII2 +Ck2llUll2 + Ck2IIUII2. 

To estimate the boundary integrals in (5.31) we use the inequalities, 

w a2 + ae 2d 6CIIW112 + 112 6C11u 
(5.33) -I WId2 + CIIsII}Oe J a\ aJ) / H H2 ( 

(5.35) fa le 12 ds < ClleII}23 S CIIUII22, 

(5.36) fa e 12 ds S CIv II1 S CIIUI12Hi- 

Hence, 

IIUIIA ? C{( + ?rkh)IIU1IO (k + k? + Xkh)IIUII{l ? (k2 ? kh)IIUIJ{2} 

(5.37) S C{T XIh I|UIIH0 + Xkh IIUII2l + !kh IIUII22} 

S Ck2h 2'{IIUIIjo + h2IIUIIJ1 + h4IIUIR2} 

and 

(5.38) IIUIIA < Ckh" {1LO h IIUIIHI}- 

From (5.38) and (5.2), we have, 

(5.39) Inf 11 - WIIA S CkhS+2-g11WII2+s 
h 

as required. 

Recall that E(t) is the solution operator for the analytic problem (2.10)-(2.12), 

Ek(t) that for the semidiscrete problem (3.1)-(3.3), and Ekh(t) = Ekh is the fully-discrete 

solution operator. In Lemma 5.3, the stability of the fully-discrete problem was estab- 

lished. The next lemma shows that the fully-discrete scheme is consistent with (2.10)- 

(2.12). 
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LEMMA 5.5. Fix , > 2 in (5.19)-(5.21) and let q > , - 2 > 0 in (5.1). Let 
VE t/. Then 

(5.40) ILEkh V - E(k) VIIA ?C{khq + 2 -I 11VI12+q + k3IIVII1 + k3II V116}- 

Proof Since V E ff2, U defined by (5.8) minimizes 1I1 - Ek(k) VIIA over S . 
Hence, using Lemma 5.4 and Theorem 3.1, 

(5.41) 11 U - Ek(k) VIIA ? Ckhq + 2 -g IIEE(k) VII2 + q Ckhq+22-V 11VI12+q. 

Next, W = Ekh V, defined by (5.11), satisfies (5.12). Hence, 

(5.42) IIEkh V - Ek(k) VIIA ? C(khq + 2 -I11VI12+q + k3IIVII1). 

From Theorem 3.2, 

(5-43) 1 IL k- (E(k) V - Ek(k) V/)lI }0 Ck3 1 V16 

From (5.5), since V C h25 

1 IE(k) V - Ek (k) VI 12 A< I IL k- (E(k) V - E y )112 lt 

(5.44) +4k6f ds (E(k)V-Ek(k)Vll ? la(E(k)V-Ek(k))3 2 

I IV-4(E(k)V-Ek(k)Jp 1Io 2 C+76IE(k)J'12l + Ck6IIEk(k)J'I . 

Hence, using (5.43) and Theorems 2.1 and 3.1, 

(5.45) IIE(k)V - Ek(k)VIIA I Ck3(IIVII1 + 11VI16). 

The lemma now follows from (5.45), (5.42) and the triangle inequality. 
We may now state and prove the following theorem concerning the convergence 

of each of the schemes (5.22), (5.23). 
THEOREM 5.1. Fix p > 2 in (5.19)-(5.21) and let q > , - 2 > 0 in (5.1). Let 

W 0 t Max(2+q,6). Then, with a as in (4.3), we have for all 0 < t = nk < T, 

(5.46) IIEkh(t)W?-E(t)W?II0o <, CIIEkh(t)W?-E(t)W?IIA 

< CTea T{hq+2h-,I Wo112+q + k2IIWoII6}. 

Proof We use the identity 

(5.47) Ekh(t)W - E(t)W0 = Ej Ek- 1-j [Ekh - E(k)] E(fk)W0. 
j=0 

By Lemma 5.5 and Theorem 2.1, 

IIEkhE(k)W0 - E(k)E(jk)W? IIA 

(5.48) S Ck{hq+2-IIE(k)WO112+q + k2IIEQk)WO111 + k2IIE(Uk)W0116} 

S Ck{hq+ 2-MIIWO112+q + k2 IIW0II6}. 

Next, by Lemma 5.3, IIEkhIlA S CeaT. Hence, from (5.47), (5.48), 
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(5.49) Ekh )W - E(t)W IIA T hq + 2 -2 W? 116 }. 

Finally, from (4.3), 

(5.50) IIEkh')Wt - E(t)W0Iyo < 1 - ak IIEkh(t)W0 - E(t)W0IIA. 

The theorem follows from (5.49), (5.50). 
Important Remarks. The assumptions (5.19)-(5.22) about the weights lrkh, Xkh 

and 7kh' require that 

(5.51) h ? Ck3 (-2) as k, h 0. 

This requirement is a consistency condition rather than a stability condition. As a con- 
sequence of this requirement, the error bound (5.46) has the form 

(5.52) IIEkh(t)We -E(t)W0 IIo S CTeaT{ k2IIWoII6 + k(3q- 3g+ 6)/(A-2) 11W 112+ql 

Thus, the smallest possible error is 0(k2) and it occurs if , and q are such that 

(5.53) q = 5@ - 2)/3. 

Assume now that the initial data W? are sufficiently smooth. Given any positive inte- 
ger value of q, we see from (5.52), (5.53) that we get 0(k2) accuracy by choosing A in 
(5.19)-(5.22) so that 

(5.54) g = (3q + 10)/5. 

Thus, for example, if we choose q = 1 in (5.1) and let Sq be the space of three-compo- 
nent vectors where the first and third components are cubic splines, and the second is 
a quadratic spline, we obtain 0(k2) accuracy in the Ho x L2 x Ho norm on choosing 
M = 13/5. Notice however that this means h must be chosen so that 

(5.55) h < Ck5 as h, k - 0. 

Such a constraint on h is obviously impractical from the computational standpoint. We 
elect instead to use larger values of q, in order to obtain 0(k2) accuracy with a more 
favorable mesh inequality (5.51). Thus, with , = q = 5 and Sq chosen to be splines of 
degree 7 x 6 x 7, we get 0(k2) accuracy with h satisfying 

(5.56) h?Ck ask,h-o0. 

Other combinations of q and , which yield 0(k2) accuracy under sufficient smoothness 
of W?, are listed in the following table. 

The nature of the penalty which must be paid in order to be able to use the 
wrong values for the normal derivatives of the solution in the fully discrete scheme, is 
now clear. In the Crank-Nicolson least-squares scheme for the heat equation discussed 
in [4], one has h < Ck213 so that quartic splines are needed to obtain 0(k2) accuracy 
in the L2 norm. Here, using a comparable mesh inequality, i.e., h < Ck517, we see 
from Table 1 that we need splines of degree 9 x 8 x 9 to obtain 0(k2) accuracy in the 

Ho x L2 x Ho norm. 
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TABLE 1 

Degree of Splines Mesh Inequality 
in Sq q i 

4x 3x 4 2 16/5 h?Ck512 
5x 4x 5 3 19/5 h6Ck513 
6 x 5 x 6 4 22/5 h Ck514 
7 x 6x 7 5 5 h6Ck 
8x 7x 8 6 28/5 h?Ck516 
9 x 8x 9 7 3/5 h Ck517 

10 x 9x 10 8 34/5 h Ck518 
11 x 10 x 11 9 37/5 h Ck519 
12x 11 x 12 10 8 h?Ck"2 

The above remarks concerning 0(k2) accuracy assume that W? is sufficiently 
smooth, i. e., W? E fMax(q+2,6) More generally, we have 

THEOREM 5.2. Let WO E H , s > 2. Choose a positive integer q in (5.1), and 
let , in (5.19)-(5.21) satisfy (5.54). Then for 0 S t S T, 

(5.57) IIEkh (t) O -EE(t)W0 11 HO < C exp(atT) {k2 M in ( ,(s- 2)/q,(s- 2)/4)} 11 WO II 

Proof. If W? - [w, v, e] T ( f/2, then 

IIWOII = IIL W01120 + 4k6 (aW 2 + 9e 2d 
(5.58) 

S C{ I1W0112 + (k2 + k6)IIW0IIO + k2IIW0II} S CIIW012. 

From Lemma 5.3, Theorem 2.1, (5.58), and the triangle inequality, 

(5.59) IIEkh(t)W? - E(t)W?IIH0 ? Cec T IIWoI12. 

If WO e fMax(q+2,6), then with p as in (5.54), we have from (5.52) 

(5.60) IIEkh(t)W0 - E(t)W0II X? S CT exp(aT) {k2 IIW? IIMax(q+2,6)}. 

Next, the spaces fi'S have the interpolation property discussed in [4, Lemma 2.2]. 
Hence, if W? C 14S, s > 2, 

(5.61) IIEkh(t)W0 - E(t)W01I H? S C exp(a) {k2Min(1,(s-2)lq,(s -2)14)} 11w0 Is. 

Remark. While the analytic problem (2.10)-(2.12) is well posed in tl0, the fully- 
discrete scheme requires W? GE J2 in order to obtain convergence. A similar phenom- 
enon occurs in [4]. For initial data in Hs, 0 < s < 2, a convergent least-squares pro- 
cedure can be constructed based on the pure implicit scheme, rather than the Crank- 
Nicolson. For the case of the Dirichlet problem for the wave equation, such a procedure 
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is discussed in [5], and similar difficulties are encountered in connection with unknown 
normal derivatives. 
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